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Abstract: 

In this paper we establish a relation Dirichlet average of 𝑊𝛼 ,𝛽 𝑥 unction, using fractional derivative.  
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1.Introduction 
Carlson [1-5] has defined Dirichlet average of functions which represents certain type of integral average with 

respect to Dirichlet measure. He showed that various important special functions can be derived as Dirichlet 

averages for the ordinary simple functions like𝑥𝑡 ,𝑒𝑥  etc. He has also pointed out [3] that the hidden symmetry of all 

special functions which provided their various transformations can be obtained by averaging   𝑥𝑛 ,𝑒𝑥  etc. Thus he 

established a unique process towards the unification of special functions by averaging a limited number of ordinary 

functions. Almost all known special functions and their well known properties have been derived by this process. 

  

In this paper the Dirichlet average of Hyper-geometric function has been obtained. 

 

1. Definitions: 

We give blew some of the definitions which are necessary in the preparation of this paper. 

 

1.1 Standard  Simplex in 𝑹𝒏, 𝒏 ≥ 𝟏: 

We denote the standard simplex in 𝑅𝑛 , 𝑛 ≥ 1 by [1, p.62]. 

𝐸 = 𝐸𝑛 =  𝑆 𝑢1,𝑢2, …… . . 𝑢𝑛  ∶  𝑢1 ≥ 0, ……… . 𝑢𝑛 ≥ 0,  𝑢1 + 𝑢2 + ⋯…… + 𝑢𝑛 ≤ 1            (2.1.1) 

 

1.2 Dirichlet measure: 

  Let 𝑏 ∈ 𝐶𝑘 , 𝑘 ≥ 2 and let 𝐸 = 𝐸𝑘−1 be the standard simplex in 𝑅𝑘−1 . The complex measure 𝜇𝑏  is defined by 𝐸[1]. 

𝑑𝜇𝑏 𝑢 =
1

𝐵 𝑏 
𝑢1

𝑏1−1
…………… . 𝑢𝑘−1

𝑏𝑘−1−1
 1 − 𝑢1 − ⋯………− 𝑢𝑘−1 𝑏𝑘

−1𝑑𝑢1 ………… . 𝑑𝑢𝑘−1 

(2.2.1) 

Will be called a Dirichlet measure. 

Here 

𝐵 𝑏 = 𝐵 𝑏1, ……… . 𝑏𝑘 =
Γ 𝑏1 …………… . . Γ 𝑏𝑘 

Γ 𝑏1 + ⋯…… . . +𝑏𝑘 
, 

𝐶> =  𝑧 ∈ 𝑧: 𝑧 ≠ 0,  𝑝ℎ 𝑧 < 𝜋
2  , 

Open right half plane and 𝐶>k is the 𝑘𝑡ℎ  Cartesian power of 𝐶> 

 

1.3 Dirichlet Average[1, p.75]: 

Let Ω be the convex set in 𝐶>, let 𝑧 =  𝑧1 , ……… , 𝑧𝑘 ∈ Ωk , k ≥ 2 and let 𝑢. 𝑧 be a convex combination of 

𝑧1 , ……… , 𝑧𝑘 . Let 𝑓 be a measureable function on Ω and let  𝜇𝑏  be a Dirichlet measure on the standard simplex 𝐸 in 

𝑅𝑘−1.Define  
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𝐹 𝑏, 𝑧 =  𝑓 𝑢. 𝑧 𝑑

0

𝐸

𝜇𝑏 𝑢                                                          (2.3.1) 

We shall call F the Dirichlet measure of 𝑓 with variables 

𝑧 = (𝑧1, ……… , 𝑧𝑘) and parameters 𝑏 =  𝑏1, ……… .𝑏𝑘 . 

Here  

𝑢. 𝑧 =  𝑢𝑖𝑧𝑖

𝑘

𝑖=1

 and 𝑢𝑘 = 1 − 𝑢1 − ⋯…… . −𝑢𝑘−1                                               (2.3.2) 

         If 𝑘 = 1, define 𝐹 𝑏, 𝑧 = 𝑓 𝑧 . 
 

1.4 Fractional Derivative [8, p.181]: 

The concept of fractional derivative with respect to an arbitrary function has been used by Erdelyi[8]. The most 

common definition for the fractional derivative of order 𝛼 found in the literature on the “Riemann-Liouville 

integral” is 

𝐷𝑧
𝛼𝐹 𝑧 =

1

Γ(−𝛼)
 𝐹 𝑡 (𝑧 − 𝑡)−𝛼−1𝑑𝑡                                                            (2.4.1)

𝑧

0

 

Where 𝑅𝑒(𝛼) < 0 and 𝐹(𝑥) is the form of 𝑥𝑝𝑓(𝑥), where 𝑓(𝑥) is analytic at 𝑥 = 0. 
 

2.5  The wright function 𝑾𝜶,𝜷 𝒛 : 

 

 The Wright function, that denote by Wα,β z  is so named in honors of E. Maitland Wright, the eminent 

British mathematician, who introduced and investigated this function in a series of notes starting from 1933 in the 

framework of the asymptotic theory of partitions, see [Wright (1933); 1935a; 1935b].The function is defined by the 

series representation, convergent in the whole z-complex plane, 

𝑊𝛼 ,𝛽  𝑧 =  
𝑧𝑛

𝑛! Γ(𝛼𝑛 + 𝛽)
,

∞

𝑛=0

 𝛼 > −1,       𝛽 ∈ 𝐶                           (2.5.1) 

so 𝑊𝛼 ,𝛽 𝑧  is an entire function. Originally Wright assumed  𝛼> 0, and, only in 1940, he considered −1 < 𝛼< 0, see 

[Wright 1940]. We note that in the handbook of the Bateman Project [Erdelyi et al. Vol. 3, Ch. 18], presumably for a 

misprint, 𝛼 is restricted to be non negative. 

 

Equivalence: 

In this section we shall show the equivalence of single Dirichlet average of 𝑊𝛼 ,𝛽 𝑥 function (𝑘 = 2) with the 

fractional derivative i.e. 

𝑆 𝛽, 𝛽′; 𝑥, 𝑦 =
Γ 𝛽 + 𝛽′ 

Γ𝛽
(𝑥 − 𝑦)1−𝛽−𝛽 ′

𝐷𝑥−𝑦
−𝛽 ′

𝑊𝛼 ,𝛽  𝑥 (𝑥 − 𝑦)𝛽−1                                   (3.1) 

Proof:  

𝑆 𝛽, 𝛽′; 𝑥, 𝑦 =  
1

   𝛤(𝛼𝑛 + 𝛽)   

∞

𝑛=𝑜

1

𝑛!
𝑅𝑛(𝛽, 𝛽′; 𝑥, 𝑦) 

=  
1

   𝛤(𝛼𝑛 + 𝛽)   

∞

𝑛=𝑜

Γ 𝛽 + 𝛽′ 

Γ𝛽 Γ𝛽′
 [𝑢𝑥 +  1 − 𝑢 𝑦]𝑛  𝑢𝛽  −1(1 − 𝑢)𝛽 ′−1𝑑𝑢  

1

0

 

Putting 𝑢 𝑥 − 𝑦 = 𝑡, we have, 

=  
1

   𝛤(𝛼𝑛 + 𝛽)   

∞

𝑛=𝑜

Γ 𝛽 + 𝛽′ 

Γ𝛽 Γ𝛽′
 [𝑡 + 𝑦]𝑛   

𝑡

𝑥 − 𝑦
 
𝛽  −1

 1 −
𝑡

𝑥 − 𝑦
 
𝛽 ′−1 𝑑𝑡

𝑥 − 𝑦
  

𝑥−𝑦

0

 

On changing the order of integration and summation, we have 

= (𝑥 − 𝑦)1−𝛽−𝛽 ′ Γ 𝛽 + 𝛽′ 

Γ𝛽 Γ𝛽′
  

1

   𝛤(𝛼𝑛 + 𝛽)   

∞

𝑛=𝑜

[𝑡 + 𝑦]𝑛   𝑡 𝛽
 −1 𝑥 − 𝑦 − 𝑡 𝛽

′−1𝑑𝑡  

𝑥−𝑦

0

 

Or  
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= (𝑥 − 𝑦)1−𝛽−𝛽 ′ Γ 𝛽 + 𝛽′ 

Γ𝛽 Γ𝛽′
 𝑊𝛼 ,𝛽 𝑥   𝑡 𝛽

 −1 𝑥 − 𝑦 − 𝑡 𝛽
′−1𝑑𝑡  

𝑥−𝑦

0

 

 

Hence by the definition of fractional derivative, we get 

𝑆 𝛽, 𝛽′; 𝑥, 𝑦 = (𝑥 − 𝑦)1−𝛽−𝛽 ′ Γ 𝛽 + 𝛽′ 

Γ𝛽
𝐷𝑥−𝑦

−𝛽 ′

𝑊𝛼 ,𝛽 𝑥 (𝑥 − 𝑦)𝛽−1 

This completes the Analysis. 
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