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Abstract:
In this paper we establish a relation Dirichlet average of K, function, using fractional derivative.
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Introduction

Carlson [1-5] has defined Dirichlet average of functions which represents certain type of integral average with
respect to Dirichlet measure. He showed that various important special functions can be derived as Dirichlet
averages for the ordinary simple functions likext,e* etc. He has also pointed out [3] that the hidden symmetry of all
special functions which provided their various transformations can be obtained by averaging x",e* etc. Thus he
established a unique process towards the unification of special functions by averaging a limited number of ordinary
functions. Almost all known special functions and their well known properties have been derived by this process.

In this paper the Dirichlet average of Hyper-geometric function has been obtained.

1. Definitions:
We give blew some of the definitions which are necessary in the preparation of this paper.

1.1 Standard Simplexin R®,n > 1:
We denote the standard simplex in R™, n > 1 by [1, p.62].
E=E, ={S(ugug oo Up) U 20, ey 20, Uy + Uy + et u, < 1) (2.1.1)

1.2 Dirichlet measure:
Letb € C*, k > 2 and let E = E,,_, be the standard simplex in R, The complex measure y, is defined by E[1].

1
duy(u) = @ufl_l ....uZ’i‘ll_l(l — U= e —Up_)btduy e e AUy
(2.2.1)
Will be called a Dirichlet measure.
Here
| (29 T N (79
B(b) = B(b1, ..........bk) = Ty + o tby)
Cs = {z €z:z+0,|phz| < ”/2},
Open right half plane and C.k is the k" Cartesian power of C.,
1.3 Dirichlet Average[1, p.75]:
Let Q be the convex set in C., let z = (z, ... .. ... ,z;,) €QX k> 2 and let u.z be a convex combination of
Zqy cee e e ,Z,. Let f be a measureable function on Q and let u;, be a Dirichlet measure on the standard simplex E in

R*~1 Define
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F(b,z) = J-f(u. z)d py, (u) (2.3.1)
E
We shall call F the Dirichlet measure of f with variables
Z = (21, e ee e ,7;,) and parameters b = (b, ... ... .... by).
Here
k
u.z= Z w;zi anduy =1 —uy — e —Up_q (2.3.2)

i=1
If k = 1, define F(b,z) = f(2).

1.4 Fractional Derivative [8, p.181]:

The concept of fractional derivative with respect to an arbitrary function has been used by Erdelyi[8]. The most
common definition for the fractional derivative of order a found in the literature on the “Riemann-Liouville
integral” is

DIF(z) =

! JF(t)(Z — )" lat (2.4.1)
I'(-a) .

Where Re(a) < 0 and F(x) is the form of x? f (x), where f(x) is analytic at x = 0.

1.3 2.5 S-Function:
This function introduced by the author is defined as follows:

> (al)n ..... (a ) ax™"
acxpB . . = P/n
Spa (a1 o apirbre e byix ) = Z By - - - - (b,), Tan+p+Dnl

(1.3.1)

Here, p upper parameters a;a, . .. . a,and q lower parameters by, by, by, a,BeC, R(a) >0,
R(B) > 0and (a;); (b)), are pochammer symbols and K is constant. The function (3) is defined when none of the
denominator parameters b;s, j = 1,2, ... ... q is a negative integer or zero. If any parameter g; is negative then the
function (3) terminates into a polynomial in x. By using ratio test, it is evident that function (3) is convergent for all
X, when g = p, it is convergent for |x| < 1 when p = q + 1, divergent when p > g + 1. In some cases the series is
convergent for x = 1, x = —1. Let us consider take,

- -

whenp = q + 1, the series is absolutely convergent fo
0 < R(B) < 1 and divergent for |x| = 1, if 1< R(B).

x| =1 if R(B) <0, convergent for x = —1, if

Equivalence:
In this section we shall show the equivalence of single Dirichlet average of “S;,",‘f (x)function (k = 2) with the
fractional derivative i.e.

B +pB) _

S@.Bxy) == =) P DL oS () e -y (31)
Proof:
s . _ = (al)n ..... (ap)n K ax™" R .
N TS (by), Tantprn "FFixy
_y (@), k il LE+5) 1[ux + (1 —wy] uf 11 —wf ldu
B Lib)y o (b)), Tlan+p+1) TETH J Y

Putting u(x — y) = t, we have,
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0 ’ =y |
_y L (ay), axt  TEEE) (o ( t )ﬁ -1 (1 t )ﬂ g
= e b))y ov v (bq)n I'(an+pB+1) TRIB J PR
On changing the order of integration and summation, we have

X—y ©
T +B) (@), - - ... (a,) a” ,
= — )BT Z n n B=1(n _ ~_ +\B -1
= VAVE Of ;(bl)n ..... (bq)nkF(an+ﬁ+1) [E+y]" (O (x -y -0 —dt
Or
TE+E) [ ,
=@ —y)lFF ase P (©)F (x —y — )F ldt

TATR )

Hence by the definition of fractional derivative, we get

: TB+B) s
O R
This completes the Analysis.
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