RESEARCH ARTICLE

FRACTIONAL q-DERIVATIVE OF ROBOTNOV AND HARTLEY FUNCTION

Mohd. Farman Ali ${ }^{1}$, Manoj Sharma ${ }^{2}$, Renu Jain ${ }^{1}$

1. School of Mathematics and Allied Sciences, Jiwaji University, Gwalior.
2. Department of Mathematics RJIT, BSF Academy, Tekanpur.

Abstract:

In present paper, we have derived the fractional q-derivative of special functions. To begin with the theorem on term by term q-fractional differentiation has been derived. The result is an extension of an earlier result due to Yadav and Purohit [8] and Sharma and Jain [9]. As a special case, of fractional q-differentiation of Robotnov and Hartley's function has been obtained.

Key Words: Fractional integral and derivative operators, Fractional q-derivative, Generalized Robotnov and Hartley's function and Special functions.

Mathematics Subject Classification- Primary33A30, Secondary 33A25, 83C99.

Definition:
1.1. q-Analogue of Differential Operator

Al-Salam [3], has given the q-analogue of differential operator as

$$
\begin{equation*}
D_{q} f(x)=\frac{f(x q)-f(x)}{x(q-1)} \tag{1.1}
\end{equation*}
$$

This is an inverse of the q -integral operator defined as

$$
\begin{equation*}
\int_{x}^{\infty} f(t) d(t: q)=x(1-q) \sum_{k=1}^{\infty} q^{-k} f\left(x q^{-k}\right) \tag{1.2}
\end{equation*}
$$

Where $0<|q|<\mathbf{1}$

1.2. Fractional Q-DERIVATIVE OF ORDER α :

THE FRACTIONAL Q-DERIVATIVE OF ORDER α IS DEFINED AS

$$
\begin{equation*}
D_{x, q}^{\alpha} f(x)=\frac{1}{\Gamma_{Q}(-\alpha)} \int_{0}^{x}(x-y q)_{-\alpha-1} f(y) d(y ; q) \tag{1.2.1}
\end{equation*}
$$

Where Re $(\alpha)<0$
AS A PARTICULAR CASE OF (3), WE HAVE

$$
\begin{equation*}
D_{x, q}^{\alpha} x^{\mu-1}=\frac{\Gamma_{\mathrm{Q}}(\mu)}{\Gamma_{\mathrm{Q}}(\mu-\alpha)} x^{\mu-\alpha-1} \tag{1.2.2}
\end{equation*}
$$

1.3 Robotnov and Hartley Function:

The following function was introduced (Hartley and Lorenzo, 1998) during solving of the fundamental linear fractional order differential equation:

$$
\begin{equation*}
F_{\alpha}[a, z]=\sum_{k=0}^{\infty} \frac{(a)^{k} z^{(k+1) \alpha-1}}{\Gamma(k \alpha+\alpha)}, q>0 \tag{1.3.1}
\end{equation*}
$$

This function had been studied by Robotnov $(1969,1980)$ with respect to hereditary integrals for application to solid machanics.

2. Main Results

IN THIS SECTION WE DRIVE THE RESULTS ON TERM BY TERM Q-FRACTIONAL DIFFERENTIATION OF A POWER SERIES. AS PARTICULAR CASE WE WILL THE FRACTIONAL Q-DIFFERENTIATION OF THE GENERALIZED M-
SERIES AND EXPONENTIAL SERIES.
THEOREM 1: IF THE Robotnov and Hartley Function $F_{\alpha}[a, z]$ converges absolutely for $|q|<\boldsymbol{\rho}$ THEN

$$
\begin{equation*}
D_{z, q}^{\mu}\left\{Z^{\lambda-1} \sum_{k=0}^{\infty} \frac{(a)^{k} Z^{(k+1) \alpha-1}}{\Gamma(k \alpha+\alpha)}\right\}=\sum_{k=0}^{\infty} \frac{(a)^{k}}{\Gamma(k \alpha+\alpha)} D_{z, q}^{\mu} Z^{(k+1) \alpha+\lambda-2} \tag{2.1}
\end{equation*}
$$

Where $\operatorname{RE}(\lambda)>\mathbf{0}, \operatorname{RE}(\mu)<\mathbf{0}, 0<|q|<\mathbf{1}$
Proof: Starting From the left Side and using equation (2.1), we have

$$
\begin{align*}
& D_{z, q}^{\mu}\left\{z^{\lambda-1} \sum_{k=0}^{\infty} \frac{(a)^{k} z^{(k+1) \alpha-1}}{\Gamma(k \alpha+\alpha)}\right\}=\frac{1}{\Gamma_{\mathrm{Q}}(-\mu)} \int_{0}^{z}(z-y q)_{-\mu-1} y^{\lambda-1} \sum_{k=0}^{\infty} \frac{a^{k} y^{(k+1) \alpha-1}}{\Gamma(k \alpha+\alpha)} d(y ; q) \\
& \quad=\frac{z^{\lambda-\mu-1}}{\Gamma_{Q}(-\mu)} \int_{0}^{1}(1-t q)_{-\mu-1} t^{\lambda-1} \sum_{k=0}^{\infty} \frac{a^{k} z^{(k+1) \alpha-1} t^{(k+1) \alpha-1}}{\Gamma(k \alpha+\alpha)} d(t ; q) \tag{2.2}
\end{align*}
$$

NOW THE FOLLOWING OBSERVATION ARE MADE
(i) $\quad \sum_{k=0}^{\infty} \frac{a^{k} Z^{(k+1) \alpha-1} t^{(k+1) \alpha-1}}{\Gamma(k \alpha+\alpha)}$ converges absolutely and therefore uniformly on domain of x over the region of integration.
(ii)

$$
\int_{0}^{1}\left|(1-t q)_{-\mu-1} t^{\lambda-1}\right| d(t ; q) \text { IS CONVERGENT, }
$$

Provided $\quad \operatorname{RE}(\lambda)>0, \operatorname{RE}(\mu)<0,0<|q|<1$
THEREFORE THE ORDER OF INTEGRATION AND SUMMATION CAN BE INTERCHANGED IN (2.2) TO OBTAIN.

$$
\begin{aligned}
& \quad=\frac{z^{\lambda-\mu-1}}{\Gamma_{Q}(-\mu)} \sum_{k=0}^{\infty} \frac{a^{k} z^{(k+1) \alpha-1}}{\Gamma(k \alpha+\alpha)} \int_{0}^{1}(1-t q)_{-\mu-1} t^{(k+1) \alpha+\lambda-2} d(t ; q) \\
& =\sum_{k=0}^{\infty} \frac{a^{k}}{\Gamma(k \alpha+\alpha)} D_{z, q}^{\mu} z^{(k+1) \alpha+\lambda-2}
\end{aligned}
$$

Hence the statement (5) is proved.

3. Some special cases:

(i) If we take $\alpha=1$ in equation (2.1) it becomes the fractional q-derivative of power series.

$$
\begin{equation*}
D_{z, q}^{\mu}\left\{z^{\lambda-1} \sum_{k=0}^{\infty} \frac{(a)^{k} z^{k}}{\Gamma(k+1)}\right\}=\sum_{k=0}^{\infty} \frac{(a)^{k}}{\Gamma(k+1)} D_{z, q}^{\mu}\left\{z^{k+\lambda-1}\right\} \tag{3.1}
\end{equation*}
$$

This equation (3.1) is known result given by Yadav and Purohit [8] and Ali, Jain and Sharma [9].
(ii) When $\alpha=1$ and $a=1 \mathrm{in}(2.1)$, we have

$$
\begin{equation*}
D_{z, q}^{\mu}\left\{z^{\lambda-1} \sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(k+1)}\right\}=\sum_{k=o}^{\infty} \frac{1}{k!} D_{z, q}^{\mu}\left\{z^{k+\lambda-1}\right\} \tag{3.2}
\end{equation*}
$$

EQUIVALENTLY,

$$
\begin{equation*}
D_{z, q}^{\mu}\left\{z^{\lambda-1} e^{z}\right\}=\sum_{k=0}^{\infty} \frac{1}{k!} D_{z, q}^{\mu}\left\{z^{k+\lambda-1}\right\} \tag{3.3}
\end{equation*}
$$

Thus the equation reduces to fractional q-derivative of exponential function.
Acknowledgment:The author would like to thank to Prof.. for the valuable comments and improvements upon the paper.

References

[1] Agarwal, R.P.: Fractional q-derivatives and q-integrals and certain hypergeometric transformations, Ganita 27 (1976), 25-32.
[2] Agarwal, R.P.: "Resonance of Ramanujan's Mathematics, 1", New Age International Pvt. Ltd. (1996), New Delhi.
[3] Al-Salam, W.A.: Some fractional q-integral and q-derivatives, Proc. Edin. Math. Soc. 15 (1966), 135-140.
[4] Exton, H.: q-hypergeometric functions and applications, Ellis Horwood Ltd. Halsted Press, John Wiley and Sons, (1990), New York.
[5] Gasper, G. and Rahman, M.: Basic Hypergeometric Series, Cambridge University Press, (1990), ambridge.
[6] Manocha, H.L. and Sharma, B. L.: Fractional derivatives and summation, J. Indian Math. Soc. 38 (1974), 371-382.
[7] Rainville, E.D.: Special Functions, Chelsea Publishing Company, Bronx, (1960), New York.
[8] Yadav, R. K. and Purohit, S. D.: Fractional q-derivatives and certain basic hypergeometric transformations. South East Asian, J. Math.and Math. Sc. Vol. 2 No. 2 (2004), 37-46.
[9] Sharma, M. and Jain, R.: A note on a generalized M-Series as a special function of fractional calculus. J. Fract. Calc. and Appl. Anal. Vol. 12, No. 4 (2009), 449-452.

