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Abstract: 

In present paper, we have derived the fractional q-derivative of special functions. To begin with the theorem on term 

by term q-fractional differentiation has been derived. The result is an extension of an earlier result due to Yadav and 

Purohit [8] and Sharma and Jain [9]. As a special case, of fractional q-differentiation of Robotnov and Hartley’s 

function has been obtained.    
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Definition:  

1.1.  q-Analogue of Differential Operator 

 Al-Salam [3], has given the q-analogue of differential operator as 

𝐷𝑞𝑓 𝑥 =
𝑓 𝑥𝑞 − 𝑓(𝑥)

𝑥(𝑞 − 1)
                                                                                              (1.1) 

This is an inverse of the q-integral operator defined as 

 𝑓 𝑡  𝑑(𝑡: 𝑞)

∞

𝑥

= 𝑥 1 − 𝑞  𝑞−𝑘

∞

𝑘=1

𝑓 𝑥𝑞−𝑘                                                    (1.2) 

WHERE 0 <  𝑞 < 𝟏 

1.2. FRACTIONAL Q-DERIVATIVE OF ORDER 𝛼: 

THE FRACTIONAL Q-DERIVATIVE OF ORDER 𝛼 IS DEFINED AS  

𝐷𝑥  ,𝑞
𝛼 𝑓 𝑥 =

1

ΓQ −𝛼 
 (𝑥 − 𝑦𝑞)−𝛼−1

𝑥

0

𝑓 𝑦 𝑑 𝑦; 𝑞                                                        (1.2.1) 

WHERE RE  𝛼 < 𝟎 

AS A PARTICULAR CASE OF (3), WE HAVE  

𝐷𝑥  ,𝑞
𝛼 𝑥𝜇−1 =

ΓQ 𝜇 

ΓQ 𝜇 − 𝛼 
𝑥𝜇−𝛼−1                                                                  (1.2.2) 

1.3 Robotnov and Hartley Function: 

The following function was introduced (Hartley and Lorenzo, 1998) during solving of the fundamental linear 

fractional order differential equation: 

𝐹𝛼  𝑎, 𝑧 =  
(𝑎)𝑘𝑧 𝑘+1 𝛼−1

Γ(𝑘𝛼 + 𝛼)

∞

𝑘=0

,   𝑞 > 0                    (1.3.1) 

This function had been studied by Robotnov (1969, 1980) with respect to hereditary integrals for application to solid 

machanics. 
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2. MAIN RESULTS 

IN THIS SECTION WE DRIVE THE RESULTS ON TERM BY TERM Q-FRACTIONAL DIFFERENTIATION OF A POWER 

SERIES. AS PARTICULAR CASE WE WILL THE FRACTIONAL Q-DIFFERENTIATION OF THE GENERALIZED M-

SERIES AND EXPONENTIAL SERIES. 

THEOREM 1: IF THE Robotnov and Hartley Function 𝐹𝛼  𝑎, 𝑧  converges absolutely for  𝑞 < 𝝆 THEN 

𝐷𝑧  ,𝑞
𝜇

 𝑧𝜆−1  
(𝑎)𝑘𝑧 𝑘+1 𝛼−1

Γ(𝑘𝛼 + 𝛼)

∞

𝑘=0

    =  
(𝑎)𝑘

Γ(𝑘𝛼 + 𝛼)

∞

𝑘=0

𝐷𝑧  ,𝑞
𝜇

𝑧 𝑘+1 𝛼+𝜆−2                    (2.1) 

Where RE  𝜆 > 𝟎,   RE  𝜇 < 𝟎,   0<  𝑞 < 𝟏 

PROOF: STARTING FROM THE LEFT SIDE AND USING EQUATION (2.1), WE HAVE 

𝐷𝑧  ,𝑞
𝜇

 𝑧𝜆−1  
(𝑎)𝑘𝑧 𝑘+1 𝛼−1

Γ(𝑘𝛼 + 𝛼)

∞

𝑘=0

    =
1

ΓQ −𝜇 
 (𝑧 − 𝑦𝑞)−𝜇−1

𝑧

0

𝑦𝜆−1  
𝑎𝑘𝑦 𝑘+1 𝛼−1

Γ(𝑘𝛼 + 𝛼)

∞

𝑘=0

𝑑 𝑦; 𝑞  

=
𝑧𝜆−𝜇−1

ΓQ −𝜇 
 (1 − 𝑡𝑞)−𝜇−1

1

0

𝑡𝜆−1  
𝑎𝑘𝑧 𝑘+1 𝛼−1𝑡 𝑘+1 𝛼−1

Γ(𝑘𝛼 + 𝛼)

∞

𝑘=0

𝑑 𝑡; 𝑞                                      (2.2) 

NOW THE FOLLOWING OBSERVATION ARE MADE 

 𝑖                 
𝑎𝑘𝑧 𝑘+1 𝛼−1𝑡 𝑘+1 𝛼−1

Γ(𝑘𝛼 + 𝛼)

∞

𝑘=0

 converges absolutely and therefore uniformly on domain of 

 x over the region of integration. 

  𝑖𝑖                (1 − 𝑡𝑞)−𝜇−1𝑡
𝜆−1 

1

0
 𝑑 𝑡; 𝑞   IS CONVERGENT,  

PROVIDED  RE  𝜆 > 𝟎,   RE  𝜇 < 𝟎,   0<  𝑞 < 𝟏 

THEREFORE THE ORDER OF INTEGRATION AND SUMMATION CAN BE INTERCHANGED IN (2.2) TO OBTAIN. 

=
𝑧𝜆−𝜇−1

ΓQ −𝜇 
 

𝑎𝑘𝑧 𝑘+1 𝛼−1

Γ(𝑘𝛼 + 𝛼)

∞

𝑘=0

 (1 − 𝑡𝑞)−𝜇−1

1

0

𝑡 𝑘+1 𝛼+𝜆−2𝑑 𝑡; 𝑞  

=  
𝑎𝑘

Γ(𝑘𝛼 + 𝛼)

∞

𝑘=0

𝐷𝑧  ,𝑞
𝜇

𝑧 𝑘+1 𝛼+𝜆−2 

Hence the statement (5) is proved. 

3. Some special cases: 

(i) If we take 𝛼 = 1 in equation (2.1) it becomes the fractional q-derivative of power series. 

𝐷𝑧  ,𝑞
𝜇

 𝑧𝜆−1  
(𝑎)𝑘𝑧𝑘

Γ(𝑘 + 1)

∞

𝑘=0

    =  
(𝑎)𝑘

Γ(𝑘 + 1)

∞

𝑘=0

𝐷𝑧  ,𝑞
𝜇

 𝑧𝑘+𝜆−1                     (3.1) 

 

This equation (3.1) is known result given by Yadav and Purohit [8] and Ali, Jain and Sharma [9]. 

(ii) When 𝛼 = 1 and 𝑎 = 1  in(2.1), we have  

 

𝐷𝑧  ,𝑞
𝜇

 𝑧𝜆−1  
𝑧𝑘

Γ 𝑘 + 1 

∞

𝒌=𝒐

    =  
1

𝑘!

∞

𝑘=𝑜

𝐷𝑧  ,𝑞
𝜇

 𝑧𝑘+𝜆−1                                (3.2) 

EQUIVALENTLY, 

𝐷𝑧  ,𝑞
𝜇

 𝑧𝜆−1𝑒𝑧     =  
1

𝑘!

∞

𝑘=𝑜

𝐷𝑧  ,𝑞
𝜇

 𝑧𝑘+𝜆−1                                (3.3) 

Thus the equation reduces to fractional q-derivative of exponential function. 

Acknowledgment:The author would like to thank to Prof.. for the valuable comments and improvements upon the 

paper. 
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