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Abstract:
The purpose of present paper to solve 1-D fractal heat-conduction problem in a fractal semi-infinite bar has been
developed by local fractional calculus employing the analytical Manoj Generalized Yang-Fourier transforms
method.
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1. Introduction

A New Generalized Yang-Fourier transforms which is obtained by authors by generalization of Yang-Fourier
transforms is a technique of fractional calculus for solving mathematical, physical and engineering problems. The
fractional calculus is continuously growing in last five decades [1-7]. Most of the fractional ordinary differential
equations have exact analytic solutions, while others required either analytical approximations or numerical
techniques to be applied, among them: fractional Fourier and Laplace transforms [8,41], heat-balance integral
method [9-11], variation iteration method (VIM) [12-14], decomposition method [15,41], homotopy perturbation
method [16,41] etc.

The problems in fractal media can be successfully solved by local fractional calculus theory with problems for non-
differential functions [25-32]. Local fractional differential equations have been applied to model complex systems of
fractal physical phenomena [30-41] local fractional Fourier series method [38], Yang-Fourier transform [39, 40,41]

2. Generalized Yang-Fourier transform and its properties:
Let us Consider f(x) is local fractional continuous in (—oo, «0) we denote as f(x) € Ca, B(—x,») [32,
33, 35].

Let f(x) € Ca, B(—x,0) A New Generalized Yang-Fourier transform developed by authors is written in the form
[30, 31, 39, 40, 41]:
Fap{f G} = £ (@) = IMg" (a1 .. ap; by ... by;7)
@ (e), 1
C L (b (b)), TA+a+p) J

I(J)M;l:ﬁ (_ia+[?wa+ﬁxa+ﬁ)f(x)(dx)a+/3 (1)

When we put B equal to zero, and if there is no upper and lower parameter in (1) it converts in to the Yang-Fourier
transform [41].

Then, the local fractional integration is given by [30-32, 35-37, 41]:

® j=N—1
(al)n . (aP) ff(t) (dx)a+ _ ; lim J Z f(t) (At')lﬁ—ﬁ (2)

— (by)p - (b ) 1“(1+a+/3) I(1+a+p)amo L J J
where A, = ¢4 — t;, At = max{Atl,Atz, .yand {t;, 641}, = 0,...,N - 1,t, =4, ty =b, is a partition of

the interval [a, b].
If Fo g {f ()} = fj'“’ﬁ (w), then its inversion formula takes the form [30, 31, 39, 40,41]
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f@) = Fjlf " ()]
= (a) - (a 1 *®
B (;1) ((b p))" (2m)a+h fng'B(_i“ﬁw“ﬁx“ﬁ)f:ﬂ.ﬁ () (dw)“*F 3)
~ n - (bg) J

When we put B equal to zero, and if there is no upper and lower parameter it converts in to the Yang Inverse Fourier
transform [41].

Some properties are shown as it follows [30, 31]:
Let F, s {f (x)} = fEek (), and Fop{g(®)} = £E@F (), and let be two constants, if (8),. Then we have:

Foplcf (x) + dg(x)} = cFop{f ()} + dF, 5{g ()} 4
If |)lcilr_r)loof(x) = 0, then we have:

Foplf P ()} = i 0P F, 5 {f (X)) ()
In eq. (5) the local fractional derivative is defined as:
A f (x) AP [ (x) = f (x0)]
a,p — — 1;
o7 (o) dx*+k r=xo xlgﬂlgo (x — xp) P ©

Where A“*P[f (x) — f(x0)] = T(1 + a + BALf (x) — £ (x0)],
As a direct result, repeating this process, when:
f(0) =4 (0) = e = fUDDE(0) = 0 (7)
Fop{f " ()} = i**F 0 P F, g {f (x)} ®)

3. Heat conduction in a fractal semi-infinite bar:

If a fractal body is subjected to a boundary perturbation, then the heat diffuses in depth modeled by a
constitutive relation where the rate of fractal heat flux q(x, y, z, t) is proportional to the local fractional gradient of
the temperature [32,41], namely:

q(x,y,z,t) = —K***2BVHhT(x,y,2,t) 9)

Here the pre-factor K**# is the thermal conductivity of the fractal material. Therefore, the fractal heat conduction
equation without heat generation was suggested in [32] as:
d?@+BT(x,y,z,t) d?>@BT(x,y,2,t)

~ Pa+pCa+p =0 (10)

dx2@+p) dx2@+p)

Where p, .5 and c,.z are the density and the specific heat of material, respectively.
The fractal heat-conduction equation with a volumetric heat generation g(x, y, z, t) can be described as [32,41]:
0BT (x,y,2,t)

[ 2a+2p

K2a+2ﬁv2a+2ﬁ'[’(x’y’ Z, t) +g(x;yfz' t)pa+ﬁca+[? at(a+ﬁ) (11)
The 1-D fractal heat-conduction equation [32,41] reads as:
92@+BT (x, t) @B (x, 1)
2a+2 ’ ’ —
K+ ﬁW_p““;C“*BW_O' 0<x<00,t>0 (12(1)
with initial and boundary conditions are:
a@+BT(0,1) “
At B ra+ —
—@ = pMG Tt E,T(0,6) =0 (12b)
The dimensionless forms of (12a, b) are [35, 41]:
92@HBT(x,t)  d@AIT(x,t)
= = (13a)
6x2(a+ﬁ) ax(“+ﬁ)
a@+BIT(0,1) "
At B ra+ —
ox@+p) pMg" t” £,7(0,0)=0 (13b)

Based on eq. (12a), the local fractional model for 1-D fractal heat-conduction in a fractal semi-infinite bar with a
source term g(x, t) is:

Sy 92@+BIT (x, t) d@HBIT (x,t)
K W—pﬁﬁcMﬁW:g(x,t), —o<x<oot>0 (14a)
With
T(x,0) = f(x),—0 < x < o, (14b)
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The dimensionless form of the model (144, b) is:
02T (x,t)  0“PT(x,1)
@ - @m0 Te<x<®ot>0 (15a)

T(x,0) = f(x),—0 < x < o, (15b)

4. Solutions by the Generalized Yang-Fourier transform method:
Let us consider that F,, s {T (x,t)} = T(f'“"? (w, t) is the Generalized Yang-Fourier transform of T(x, t),

regarded as a non-differentiable function of x. Applying the Yang-Fourier transform to the first term of eq. (15a), we
obtain:

02@HBT (x,t)
ap { Ox2(@+p)
On the other hand, by changing the order of the local fractional differentiation and integration in the second term of
eq.(15a), we get:

= (iz(“w)a)z(“ﬁ))Tj’a’ﬁ (w,t) = wZ(“Jrﬁ)Tf’“’ﬁ (w,t) (16a)

2(a+p) §la+h) pFas
Fa,ﬁ {WT(X t)} at(a+ﬁ) (0.) t) (16b)
For the initial value condition, the Yang-Fourier transform provides:
Fo{T(x, 00} = T, (0,0) = Fo s {f (0} = £“% (@) (16¢)
Thus we get from eqn. (164, b, ¢):
9a@+B) P
B 2(a+B)pF.aB — Fa,p — fFap
@ T, (w,t) +w T,”" (w,t) =0T, (w,0) = f,"" (w) 17)

This is an initial value problem of a local fractional differential equation with t as independent variable and w as a
parameter.

T, = f10 (@), M0 (2D (18a)

Consequently, using inversion formula, egn. (3), we obtain:
T(x,t)

(@), - (ay) 1 -
= = M*F (OB ot yatB) fFh () M&F —2@+B) a+BY () *+B 18b
— (b)n ...(bq)n (2m)a+h f” a" ( )" (@),Mg™ ( )(dw) (18b)
Fa, R — a a

Mo ﬁ( )_(Zﬂ)a+ﬁp q ( w?@*h +B) (18¢)

From [30, 32] we obtained,

g @2 cla+p) 25 g P2t
Fug | M2 (2 ) = Mol (- (19a)
C2(a+h) rA+a+p)P 1 4(@+f)

Let C2@*F) jq42+F = t«+B Then we get:

+ a+
Fusp | ,ME R | B 2(a+p) pa+h
“th S 4erb et )| T T(L+a+pB) P My? (e e’
B a+f a+ﬁ
(al)n . (ap) 4+t 2

s (by)y - (by), T +a+p)

@m) P ML (w)

(19b)
Thus, Mj‘“’ﬁ (w) have the inverse:
= (al)n . (ap)
Lo (by), (b)), <2n)a+ﬁ
_T+a+p) (@) () 1 w2@+)
8 a+B (by)y . (b) (2m)e+h P q ( +B) <_—4a+ﬁ t"‘+ﬁ> (19¢)

4a+'gf2ﬂ'2no

f Mg'ﬁ (ia+ﬁwa+ﬁxa+ﬁ)M£:“:ﬁ (w)(dw)a+ﬁ
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Hence, we get:

T(x,t) = (Mf)(x)
. (an - (ap)n rl+a+p) ‘ op (x — f)z(a+ﬁ) s
) n=o (bl)n (bq)n 4‘1+ﬁ t#ﬂ# _J- f(f)qu (_ W) (dg) ’ (20)

Special case
If we take B = 0 and if there is no upper and lower parameter then the results of a New generalized Yang Fourier
Transforms convert in Yang Fourier Transforms results [41]

Conclusions
The communication, presented an analytical solution of 1-D heat conduction in fractal semi-infinite bar by the A
New Generalized Yang-Fourier transform of non-differentiable functions.
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