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This study presents the development of a Feed-Forward Neural Network 
(FFNN)-based model for security of Internet of Things (IoT) network 
protocols. The proposed method applied in the execution of the study 
involves data collection, preprocessing, feature selection, and model 
training using the CIC-IoT 2022 dataset, which includes normal and attack 

traffic from various IoT devices. In the study, Synthetic Minority 
Oversampling Technique (SMOTE) was used for data balancing, Principal 
Component Analysis (PCA) technique was used for feature selection 
and hyperparameter optimization were employed to enhance the 
performance of the model during training. The system was simulated in 
the NS-3 environment to replicate real-world IoT network conditions, and 

its effectiveness was evaluated using metrics such as accuracy, precision, 
recall, and F1-score. The results demonstrated that the FFNN-based model 
achieves an average validation accuracy of 89.7%, precision of 88.9%, 
recall of 86.9%, and an F1-score of 87.9%. The system results showcased 
robustness in detecting various attacks, including DoS, brute force and 
RTSP attacks in mixed traffic scenarios, meanwhile this study serves as a 

strong foundation for leveraging deep learning techniques to enhance IoT 
network security protocols. 

……………………………………………………………………………………………………… 
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Introduction:- 
Over the past ten years, the number of wireless devices and their uses has increased due to widespread demand for 
the Internet of Things (IoT). Over 10 billion mobile devices were in use globally in 2020, and this figure is predicted 

to rise as these networks are used more often (Cisco, 2019). Mobile Ad Hoc Networks (MANETs) -based 
decentralised wireless communications are acknowledged as the key communication technology for implementing 
extensive Internet of Things systems for uses like healthcare managemen t (Dey et al., 2017) and agricultural 
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monitoring (Sahitya et al., 2017). Wireless devices may connect with one another without a Base Station (BS) 
thanks to MANETs.  
 
By establishing a communication channel between different objects, the Internet of Things (IoT) enhances everyday 

life. Through this connection, we are able to keep an eye on those items in real time and take the appropriate steps to 
make the process better. Using multiple levels, an IoT reference model (Bendavid et al., 2018) began with 
devices/sensors for various purposes and progressed from various technologies like RFID and Bluetooth Low 
Energy (BLE) to represent empowered individuals and corporate processes that use IoT-enabled data to drive action. 
However, data and communication at every level of an IoT system's conceptualisation, as well as the links between 
them, can be impacted by information security threats. Accordingly, every gadget or subsystem needs to be 

protected (Hosseinzadeh et al., 2023).  
 
Numerous autonomous applications in the fields of healthcare, business solutions, smart cities, home automation, 
industry automation, and intelligent transportation systems have been made possible by the Internet of Things. The 
success of the Internet of Things depends on distributed data gathering, aggregation, processing, and analytics, 
which are usually done through cloud services. As data moves from sensors to services that process and analyse it 

before delivering the findings to clients or companies that use the analytics data, IoT systems evolve (Cynthia et al., 
2019).  
 
Among the new obstacles created by the massive scale of IoT networks are the management of these devices, the 
total amount of data, connectivity, storage, processing, security, and privacy concerns. Numerous aspects of the 
Internet of Things, including architecture, communication, applications, protocols, security, and privacy, have been 

extensively studied. The foundation of IoT technology commercialisation is the assurance of security, privacy, and 
user pleasure. The IoT increases the amount of threats that attackers may face by utilising enabling technologies like 
edge computing, software-defined networking, and cloud computing (CC). As a result, it is now difficult and 
complicated to monitor security as IoT infrastructure develops. To meet the security issues, solutions must take a 
broad range of factors into account (Jin et al., 2017; Bharati and Podder, 2022).  
Because nodes join and exit the network in real time, IoT networks are open and dynamic in their topology. Their 

vulnerability to security risks stems from the absence of centralised network management solutions. According to 
Liu and Xu (2018), low memory capacity, limited data storage, limited power supply, and connection bandwidth are 
some of the unique features of IoT devices. These restrictions have a big influence on how well security procedures 
work for IoT infrastructures in terms of expansion and functionality. Therefore, the increasing overhead that 
demands compute resources makes it difficult to create an intrusion detection system that works for an IoT network 
(Bakhsh et al., 2023). As hackers use advanced methods to steal confidential information while avoiding detection 

by intrusion detection systems, cyberattacks are becoming more complex and challenging to detect. Additionally, 
there are cybersecurity hazards associated with inter-network connectivity. Innovative techniques are therefore 
essential for prompt intrusion detection and assault prevention strategies. Lately, intrusion detection, network 
anomaly detection, and network protocol protection have been accomplished via the use of Machine Learning (ML) 
and Deep Learning (DL) algorithms (Khan et al., 2022).  
 

DL frameworks have gained popularity as a means of detecting network breaches. The literature needs an objective 
comparison of various deep learning models, particularly in light of new intrusion detection datasets, even if several 
surveys cover the emerging field of study on this subject (Awajao, 2023). In the modern world, cybersecurity is a 
major issue. For instance, IDS search for signs of malicious activity, whereas firewalls are used to safeguard critical 
data. The fast proliferation of Artificial Intelligence (AI) research has led to significant advancements in approaches 
like anomaly detection and pattern recognition (Yadav et al., 2022). A viable tactic for mitigating cybersecurity risks 

and guaranteeing security is artificial intelligence (Abdullahi et al., 2022).  
 
In order to analyse vast volumes of data, identify patterns and correlations, and categorise the data based on 
predetermined standards, Deep Neural Networks (DNN) employ computer resources. A promising technique for 
anomaly-based intrusion detection in IoT security is the use of DNNs to recognise and categorise data in properly 
trained DNNs. This study proposes an intrusion detection system for the IoT that uses deep neural networks to detect 

anomalies in real-time data. The goal of this study is to use Feed Forward Neural Networks (FFNN) models to 
create an anomaly detection system for the IoT network protocol. In order to obtain successful intrusion detection 
performance, the research presents a framework for implementing a Deep Learning approach for intrusion detection 
within IoT networks. 
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The Proposed Research Method 

In order to detect and categorise any weaknesses and assaults in IoT networks, this section offers a framework for 
deep learning-based intrusion detection in IoT protocols. The Feed-Forward Neural Network (FFNN) model's 

proposed framework is introduced, and then each step's important contributions are thoroughly examined and the 
tasks completed at each stage are thoroughly evaluated. The intrusion detection dataset, software, and libraries used 
in this study are thoroughly explained in the discussion that follows. After enough training, the suggested system can 
detect intrusions and recover packets from the data generated by the underlying IoT infrastructure. In order to gather 
the traffic flow of IoT devices, the suggested architecture calls for using a traffic capture technique from an IoT 
network, as suggested in Dadkhah et al. (2022). The following steps make up the process: data collecting, data 

preparation, which is crucial to data analysis since it includes feature scaling, encoding, cleaning, and dataset 
extraction. Class balance is accomplished by data augmentation approaches, and the best features are found through 
feature selection. The first stage of feature preprocessing involves splitting the dataset, after which FFNN models 
are trained, validated, and tested. 
 

Data Collection:- 
The CIC-IOT 2022 dataset was utilised in this study to detect intrusions. Using other protocols, the dataset and 

testbed configuration described in (Dadkhah et al., 2022) may be utilised for IoT device vulnerability evaluation, 
behavioural analysis, and profiling. IoT device network traffic from several domains was used to collect the dataset. 
Devices from the Canadian Institute for Cybersecurity (CIC) lab included cameras, audio equipment, and home 
automation systems. Profiling 60 IoT devices linked to the IoT network was necessary to create the dataset. The 
dataset is made up of packet headers that were gathered from every device in a variety of conditions, such as when it 
was turned on, idle, active, and during interactions, using a series of IoT traffic capture experiments over a 30 -day 

period. IoT devices were subjected to a denial-of-service (DoS) attack via HTTP, UDP, and TCP flooding using the 
Low Orbit Ion Cannon (LOIC) tool. To assess the behaviour of IoT devices, brute -force and Camera Real Time 
Streaming Protocol (RTSP) URL assaults were conducted using the Hydra and Nmap tools. 
 
Data Cleaning 

Finding and fixing mistakes, insufficient organisation, duplication, or missing values in a dataset is known as data 

cleaning. When integrating several data sources, there are several ways that data duplication or inaccurate 
categorisation might happen (Kosongo and Sun, 2020). Anomalies in datasets might result from the absence of a 
generally recognised approach for specifying each step of the data cleaning procedure. Even when findings and 
algorithms are reliable, the existence of erroneous data might jeopardise their dependability. In order to guarantee 
accuracy and consistency across all iterations, a standardised structure for the data cleaning process must be 
established. Duplicate packets are dropped, and missing and infinite values are eliminated from the CIC IOT 2022 

dataset utilised in this study. 
 
Categorical Encoding 

Label encoding is a commonly utilised approach in DL that transforms categorical input into numerical data. It 
entails giving each unique category variable a numerical value so that algorithms may handle the data effectively. 
The values of the dataset's absolute features, for instance, are “HTTPFlood”, “UDPFlood”, and “TCPFlood”. Label 

encoding is used in this stage to give the features the appropriate numerical values. One -Hot encoding, which 
represents categorical variables as binary vectors, is a further technique for converting categorical data into 
numerical data (Hancock and Khoshgoftaar, 2020). This method creates a binary vector for each category in the 
variable, as was previously explained. All values in the vector are zeros, with the exception of the index value, 
which is set to one for the matching class. 
 

Feature scaling  

The process of altering a collection of features' value range in accordance with a predetermined range is known as 
feature scaling. When a feature has a high value but has little effect on other features, this approach must be applied 
(Kosongo and Sun, 2020). Normalisation and standardisation are part of this (Kunang et al., 2021). To lessen the 
problem of notable variations throughout the merging process, normalisation is an essential step. In order to enable 
optimisation, all features are scaled to a standard range. Column values can be expressed on a consistent scale by 

normalising them using Min-Max normalisation with a chosen range of [-1,1]. 
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Data Augmentation and Balancing 

When samples are not evenly distributed among classes, the issue of unbalanced data arises. One class becomes 
unbalanced, causing a skewed dataset that might lead to a biassed model. Prior to classification, the training data is 
often re-sampled, increasing the number of samples in the minority class, and under-sampled, decreasing the number 

of samples in the majority class. Because the minority class typically has inadequate data, imbalanced classification 
problems are commonly encountered in a variety of datasets. The synthesis of new data from the minority class is 
one way to address class imbalance and mitigate the problem of restricted data availability.  
One popular method for creating extra samples in the dataset is the Synthetic Minority Oversampling Technique 
(SMOTE). According to Elreedy and Atiya (2019), the approach is based on creating data packets that link a certain 
location with its K-Nearest Neighbouring (KNN) points. To achieve a balanced dataset, the SMOTE approach 

creates new samples from the current dataset. Increasing the number of cases of the minority groups is its purpose. 
Additionally, an analysis is carried out to assess how several aspects, such as dimensionality reduction, training set 
size, and number of neighbours (K), affect the system's accuracy. A qualitative study also evaluates the factors 
influencing the outcomes.   
 
Because of the dataset's imbalance, a resampling strategy is used before to classification in order to lessen the 

possibility of problems resulting from class imbalance. By oversampling the minority class and under -sampling the 
majority class, the dataset is balanced. SMOTE analysis of the dataset resulted in resampled data for the X and Y 
variables. Eight classes were used in the experiment: three Normal classes (Power, Idle, and Interaction) and five 
Benign classes (HTTP Flood, UDP Flood, TCP Flood, RSTP, and Brute Force). SMOTE analysis was performed on 
465101 packets from the dataset, which comprises binary and multiclass categories.  
 

Feature Selection 

One method for preserving characteristics in data is feature selection, which lowers the dimensionality of the data. It 
reduces computing complexity and improves storage economy. Low-dimensional features are necessary for both 
binary and multiclass classification in the Intrusion Detection System (IDS) classifier design process because of the 
power constraints of IoT devices. This strategy has produced remarkable results, as evidenced by empirical data. By 
choosing and extracting pertinent features, Principal Component Analysis (PCA) is utilised in this study to 

transform the original dataset into a lower-dimensional subspace while maintaining the essential properties of the 
original data.  
 
PCA is a statistical method that uses orthogonal combinations of the original parameters that exhibit high variance in 
order to minimise the number of features in a dataset (Abdulhammed et al., 2019). Since the principal components 
are unrelated to one another, correlated elements that have a negligible impact on the decision -making process are 

eliminated. According to Bhattacharya et al. (2020), the primary phases in PCA include calculating the mean, 
standard deviation, covariance, cumulative percentage, eigen-vectors, and eigen-values. The dataset's relevance 
informs the selection of these pairings. The original variables are combined linearly to create the principal 
components, which are able to capture the greatest amount of volatility in the dataset.  
 
Feed Forward Neural Network Algorithm 

A Feed Forward Neural Network is an artificial Neural Network in which the nodes are linked circularly. In contrast 
to a recurrent neural network, a feed-forward neural network cycles some of its routes. The feed-forward model is 
the basic type of neural network because the input is only processed in one direction. The data always goes in one 
direction and never backwards/opposite. A weight is applied to each input to an artificial neuron. Prior to applying a 
bias to the result, the inputs are multiplied by their respective weights. The weighted total is then sent via a non-
linear function called an activation function (Sharma, 2024). The architecture of the FFNN algorithm is shown in 

Figure 1. 
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Figure 1:- Simple Architecture of the Feedforward Neural Network (FFNN) (Sharma, 2024) . 

 
As seen in Figure 1, the input layer is the initial layer and looks to include six neurones, but it is actually only the 
data that is sent into the neural network. The last layer is called the output layer. The number of neurones in the first 
and final layers depends on the task type and the dataset. The number of neurones in the hidden layers and the total 
number of hidden layers will be decided by trial and error. The first neurone from the first hidden layer will be 
coupled to every input from the preceding layer. All of the inputs from the previous layer will be linked to the 

second neurone in the first hidden layer, and the same is true for all of the neurones in the first hidden layer. 
Neurones of the second hidden layer use the outputs of the first layer as inputs, and each of these neurones is 
connected to every prior neurone. 
 
Architecture Of The Proposed Ffnn Model 

To accomplish hyperparameter optimisation, the FFNN architecture shown in Figure 2 makes use of 

RandomizedSearchCV, the KerasClassifier wrapper for the Keras library, and Scikit learns. Hyperparameter 
optimisation is used to determine the best set of hyperparameters given the dataset that is provided. The neural 
network's design is determined by four hyperparameters: the number of hidden layers, the number of neurones in 
each hidden layer, the dropout rate to prevent overfitting, and the L2 regularisation coefficient. An adequate 
selection of hyperparameters is used to modify the model in order to increase classification accuracy and decrease 
the likelihood of overfitting (Sharma et al., 2023). Following each hidden layer, the dropout regularisation technique 

is used to reduce overfitting.  
 
There are 67 features for multiclass classification and 65 features for binary class in the input layer. To find the ideal 
combination of hyperparameters to identify intrusions in the dataset, the algorithm does a randomised search across 
them. To assess the model's performance, a cross-validation method with three folds and 10 iterations was used. 
Through a methodical process of iterating through different hyperparameter configurations, the model uses training 

and validation sets to determine the optimal combination that maximises performance using RandomizedSearchCV 
in less processing time. Time and effort are saved since human tuning is no longer necessary due to the automatic 
optimisation of the model's architecture and regularisation parameters. During the search phase, several 
combinations of hyperparameters were tested for every layer. The optimal model hyperparameter configuration is 
chosen after the search is complete. 
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Figure 2:- Architecture of the Proposed FFNN Model. 

 
Three densely linked hidden layers of 256, 125, and 64 neurones make up the proposed FFNN architecture for 
binary and multiclass classification, which is depicted in Figure 2. Two neurones make up the model output layer, 

which represents different dataset categories. A popular method for dealing with multiclass issues is to employ the 
SoftMax activation function in the final layer and the ReLU activation function for hidden layers. The FFNN model 
facilitates weight updating for training by utilising the categorical cross -entropy loss function and the Adam 
optimiser. The L2 regularisation approach, a weight loss of 0.001, and a dropout rate of 0.1 for both binary and 
multiclass classification are used to refine the model. 100 epochs with 32, 64, and 128 batch sizes were used to train 
the model. Furthermore, several hidden layer and neuronal combinations were investigated.  

 
Training of the FFNN Model  

Training a FFNN algorithm in the Google Colab environment starts with setting up the workspace and preparing the 
dataset to be fed into the model for training. After initiating the necessary libraries, the dataset (CIC-IoT 2022 
dataset) is loaded and pre-processed through data cleaning, categorical encoding, feature scaling, data augmentation 
and balancing and feature selection. The dataset is then split into training and testing sets using train_test_split, then 

the FFNN model is defined using TensorFlow, with an input layer matching the number of features. The model is 
compiled with an optimizer like Adam, a loss function such as categorical cross-entropy and metrics like accuracy. 
 
The training process begins by converting labels to categorical format if necessary and training the model on the 
pre-processed dataset. After training, the model's performance is evaluated on the test set and metrics like 
performance accuracies for testing and validation sets are displayed. Finally, the trained model is saved in HDF5 

format for deployment. This implemented process in Google Colab ensures efficient training and evaluation of the 
FFNN model, making the model a powerful tool for integration in intrusion detection systems for IoT network 
protocol. 
 
Integration of the Trained FFNN Model in IoT Network Protocol 

Integrating the trainedFFNN-based intrusion detection model into an IoT network protocol involves a structured 

process to ensure seamless operation, real-time threat detection and minimal disruption to the IoT infrastructure. The 
architecture of the network includes IoT devices, an edge gateway for data collection and preprocessing and a cloud 
server for centralized analysis. The FFNN model is deployed in the cloud for large-scale data processing. Network 
traffic from IoT devices is captured using tools like Wireshark and relevant features such as packet size, protocol 
type, and source/destination IP are extracted. The data is then pre -processed to clean redundant data, encode 
categorical features into numerical values and scale features to a standard range. Feature selection techniques (PCA) 

is applied to reduce dimensionality and retain only the most relevant features. This preprocessing ensures that the 
data fed into the FFNN model is optimized for accurate anomaly detection. 
 
The FFNN model which has been in the cloud where it can handle massive data volumes and perform complex 
computations uses the pre-processed data to detect intrusions such as HTTP Flood, UDP Flood, brute force attacks 
etc. When an intrusion is detected, the system generates alerts and shuts down the IoT network system briefly, then 

the source IP is blocked and the affected device is isolated to mitigate threats. The process diagram of the integrated 
system is presented in Figure 3. 
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Figure 3:- Process Diagram of the FFNN-Based IoT Security System. 

 

The integration process also includes performance monitoring and model retraining to ensure the system remains 
effective over time. The FFNN model's performance is continuously evaluated using metrics like accuracy, 
precision, recall, and F1-score. False positives and false negatives are logged for further analysis, and the model is 
periodically retrained using new data to adapt to evolving threats. Finally, all communication between IoT devices 
and the cloud is encrypted using protocols like Secure Socket Layer (SSL) to prevent interception. By addressing 
challenges such as resource constraints, real-time processing, and scalability, the integrated FFNN-based intrusion 

detection system provides a robust and efficient solution for securing IoT networks. This process ensures that IoT 
devices and networks are protected from a wide range of threats while maintaining high performance, reliability and 
adaptability. 
 
System Implementation 

The implementation of the trained FFNN-based model for intrusion detection was implemented in the NS-3 

environment which involves creating a simulated IoT network with devices, traffic generators and attack scenarios. 
The NS-3 application is developed to capture and preprocess network traffic, feed it into the FFNN model, and 
classify it as normal or malicious. The system's performance is evaluated using metrics like accuracy, precision, 
recall, and detection time, with results visualized using Matplotlib. The simulation allows for iterative improvement 
of the intrusion detection by retraining the model and refining the network setup, ensuring robust and accurate 
intrusion detection before deployment in real-world IoT networks.  

System Results:- 

The results of the FFNN-based IoT network protocol attack detection implemented in NS-3 environment 
which demonstrate its effectiveness in securing IoT network protocol. This section presents the training results of 
implementing the FFNN-based model for intrusion detection over 10 epochs which can be seen in Table 1. The table 
considers key metrics such as training accuracy, validation accuracy, training loss and validation loss for each 
epoch. These metrics are commonly used to evaluate the performance of deep learning models during training.  
 

Table 1:- System Implementation Results. 

Epoch Training Accuracy Validation Accuracy Training Loss Validation Loss 

1 0.85 0.83 0.45 0.47 

2 0.88 0.86 0.38 0.40 

3 0.90 0.88 0.32 0.35 

4 0.92 0.89 0.28 0.31 

5 0.93 0.90 0.25 0.29 

6 0.94 0.91 0.22 0.27 

7 0.95 0.92 0.20 0.25 

8 0.96 0.92 0.18 0.24 

9 0.96 0.93 0.16 0.23 

10 0.97 0.93 0.15 0.22 

Average 0.926 0.897 0.259 0.303 
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The system results in Table 1 achieves average training accuracy of 0.926 and validation accuracy of 0.897 in 
classifying network traffic as malicious or non-malicious with strong performance across various attack situations 
such as Denial-of-Service (DoS), brute force, and RTSP attacks. Figure 4 presents the graphical representation of the 

training and validation accuracy results of the system implementation while Figure 5 presents the Loss graph of the 
of the system implementation.  

 
Figure 4:- System Performance Accuracies. 

 

 
Figure 5:- System Performance Losses. 
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In addition to accuracy and loss, other importance performance metrics such as recall, precision and F1-score which 
are essential for evaluating the performance of the FFNN-based model is presented in Table 2. These metrics 
provide a more comprehensive understanding of the model's ability to detect anomalies. Table 2 is the presentation 
of these metrics performance in 10 iterations of validation operation.  

 
Results Table for Recall, Precision, and F1-Score 

Iteration Precision Recall F1-Score 

1 0.82 0.80 0.81 

2 0.84 0.82 0.83 

3 0.86 0.84 0.85 

4 0.88 0.86 0.87 

5 0.89 0.87 0.88 

6 0.90 0.88 0.89 

7 0.91 0.89 0.90 

8 0.92 0.90 0.91 

9 0.93 0.91 0.92 

10 0.94 0.92 0.93 

Average 0.889 0.869 0.879 

 

The results attained in Table 2 demonstrates improvement in precision, recall, and F1-score in each of the iterations. 
The precision results attained increased from 0.82 to 0.94 to make up an average of 0.889 and recall improves 
from 0.80 to 0.92 arriving at an average of 0.869. Finally, the F1-score which balances precision and recall rose 
from 0.81 to 0.93 attaining an average of 0.879. This robust performance underscores the model's suitability for real-

world IoT environments where both precision and recall are essential for maintaining security and operational 
efficiency. 
 

Conclusion:- 
This study focused on the development Feed-Forward Neural Network (FFNN)-based model for the detection of 
anomalies in IoT network protocol. The proposed methodology adopted involves the application of data collection, 
preprocessing, feature selection and model training using acquired  CIC-IoT 2022 dataset which is made up of 

normal and attack traffic from various IoT devices. The FFNN model was fine -tuned using techniques 
like SMOTE for data balancing, PCA for feature selection and hyperparameter optimization to enhance performance 
during training. The system was simulated in the NS-3 environment to replicate real-world IoT network conditions 
and the system’s effectiveness was evaluated using metrics such as accuracy, precision, recall and F1 -score. The 
results demonstrated that the FFNN-based model achieves an average validation accuracy of 89.7%, precision of 
88.9%, recall of 86.9%, and F1-score 87.9%. The system showcased its robustness in detecting various attacks, 

including DoS, brute force, and RTSP attacks, even in mixed traffic scenarios.  
 
The high performance across these key metrics combined demonstrates the model's suitability for real -world 
deployment. However, the performance of the system may degrade under extremely high traffic loads or with highly 
imbalanced datasets and it will require periodic retraining of the model with different datasets to adapt to evolving 
threats. Hence, the study recommends that future research work could explore advanced deep learning architectures 

like Long Short-Term Memory (LSTM) or Convolutional Neural Networks (CNNs) to improve the system's support 
for additional IoT protocols and devices. Overall, this study provides a strong foundation for leveraging deep 
learning techniques to enhance IoT network security protocols offering an efficient solution for real -time intrusion 
detection. 
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