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Vulnerable Road Users (VRUs), such as pedestrians and cyclists, are 

among the most exposed participants in road traffic environments, and 

their reliable perception remains a key challenge for Advanced Driver 

Assistance Systems (ADAS) and autonomous vehicles. Automotive radar 

operating in the high- frequency 77 GHz band provides robust sensing 

capabilities with high range and angular resolution, making it well suited 

for VRU detection under adverse weather and lighting conditions. This 

paper presents a real-time artificial intelligence–based frame- work for 

VRU classification using 77 GHz automotive radar measurements. Radar 

signal processing techniques are applied to extract discriminative 

kinematic and micro-Doppler features that capture the distinctive motion 

characteristics of pedestrians and cyclists. These features are used to train 

a Support Vector Machine (SVM) classifier, selected for its strong 

generalization capability and low computational complexity, which is 

critical for real-time automotive applications. The proposed system is 

evaluated using real-world radar data collected in urban traffic scenarios, 

demonstrating reliable separation between pedestrian and cyclist classes 

across varying speeds and motion patterns. The results indicate that the 

proposed approach provides an effective and computationally efficient 

solution for real-time VRU classification, supporting its integration into 

safety-critical ADAS and autonomous driving systems. 
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I. Introduction 
The rapid advancement of intelligent transportation systems and automated driving technologies has significantly 

increased the need for accurate perception of road environments. Among all road participants, Vulnerable Road 

Users (VRUs), including pedestrians and cyclists, are particularly exposed due to their lack of physical protection 

and highly dynamic and un- predictable motion behavior. According to global road safety reports, VRUs account for 

a substantial portion of traffic- related injuries and fatalities, especially in urban environments where interactions 

between vehicles and non-motorized users are frequent [1], [2]. Advanced Driver Assistance Systems (ADAS) and 

autonomous vehicles rely on multi-sensor perception frameworks to ensure safe navigation and collision avoidance. 

Vision-based sensors provide rich semantic information but suffer from performance degradation under poor 

illumination, adverse weather conditions, and occlusions [3], [4]. LiDAR sensors offer accurate depth perception but 

are expensive and sensitive to environmental factors such as rain and fog [5]. In contrast, automotive radar has 



 

2 
 

ISSN 2348-0319           International Journal of Innovative and Applied Research [2026] 

 
01-11 

(Volume 14, Issue 01) 

emerged as a key sensing modality due to its long detection range, low cost, compact hardware, and robust all-

weather operation [6], [7]. Modern automotive radar systems predominantly operate in the 77 GHz frequency band, 

benefiting from large available bandwidths that enable high range resolution and improved angular discrimination 

[8]. These properties make 77 GHz radar particularly suitable for detecting small and dynamic targets such as 

pedestrians and cyclists. However, fine-grained classification of VRUs using radar data alone remains challenging 

due to limited spatial resolution compared to vision sensors and the complex nature of human motion signatures [9]. 

To address these challenges, Artificial Intelligence (AI) and machine learning techniques have been increasingly 

integrated into radar signal processing pipelines. By leveraging discriminative motion, kinematic, and micro-Doppler 

features, machine learning models can capture subtle differences be- tween VRU classes that are difficult to encode 

using rule- based methods [10], [11]. Among various machine learning approaches, Support Vector Machines 

(SVM) have shown strong performance for radar-based classification tasks due to their robustness, ability to 

generalize with limited training data, and low computational complexity, which is critical for real-time automotive 

applications [12], [13]. 

 

This work focuses on real-time classification of pedestrians and cyclists using high-frequency 77 GHz automotive 

radar and an SVM-based learning framework. The proposed approach aims to provide a reliable and computationally 

efficient VRU classification solution suitable for integration into safety- critical ADAS and autonomous driving 

systems. 

 

II. Related Work 
Radar-based perception for intelligent transportation systems has been the subject of extensive research over the 

past two decades, driven by the need for robust and reliable sensing under diverse environmental conditions. Early 

auto- motive radar systems were primarily developed for vehicle detection and adaptive cruise control, with limited 

emphasis on Vulnerable Road Users (VRUs) due to insufficient spatial resolution and simplified signal processing 

techniques [14], [15]. Initial attempts at VRU classification relied mainly on rule-based methods using basic radar 

observables such as range, radial velocity, and radar cross section (RCS) [16]. Although computationally efficient, 

these approaches were highly sensitive to noise, clutter, and inter-class variability, particularly in dense urban 

environments.  

The introduction of micro-Doppler analysis significantly advanced radar-based human and VRU recognition. Micro- 

Doppler signatures arise from micro-motions such as swinging arms and legs or rotating bicycle components, 

producing distinctive time–frequency patterns that are difficult to capture using conventional Doppler processing 

alone. Seminal work by Chen [17] and Kim and Ling [10] demonstrated that micro- Doppler features can effectively 

characterize human motion and enable activity classification using machine learning techniques. These findings 

were later extended to automotive radar platforms, where micro-Doppler information was shown to improve 

pedestrian detection and classification performance in real-world traffic scenarios [18]–[20]. 

The deployment of high-frequency 77 GHz automotive radar has further enhanced VRU perception capabilities by 

providing increased bandwidth, improved range resolution, and finer angular discrimination [7], [8]. High-resolution 

radar point clouds enable spatial characterization of targets, allowing extraction of features related to target extent, 

dispersion, and motion consistency [21]. Several studies demonstrated that combining spatial, kinematic, and 

Doppler-based features significantly improves discrimination between pedestrians, cyclists, and vehicles [9], [22]. 

Multi-frame feature aggregation has also been explored to capture temporal motion patterns, which are particularly 

important for distinguishing VRUs with similar instantaneous kinematic properties [23]. 

Machine learning techniques have become central to radar- based VRU classification. Classical approaches such as 

Sup- port Vector Machines (SVM), k-Nearest Neighbors (kNN), Gaussian Mixture Models (GMM), and Random 

Forests have been widely investigated [24], [25]. Among these, SVM- based classifiers have demonstrated strong 

generalization capability, robustness to limited training data, and relatively low computational complexity [12], 

[13]. These properties make SVMs particularly attractive for real-time automotive applications, where strict latency 

and power constraints must be satisfied. Several works have reported successful pedestrian and cyclist classification 

using SVMs trained on handcrafted radar features derived from Doppler spectra, micro-Doppler signatures, and 

point cloud statistics [26]. 

More recently, deep learning methods have been applied to automotive radar perception, including convolutional 

neural networks and recurrent architectures operating on radar spectrograms and point clouds [27]–[29]. While these 

approaches achieve high classification accuracy, they typically require large labeled datasets and substantial 

computational resources, limiting their practicality for embedded real-time systems. Consequently, lightweight 

machine learning approaches combined with high-resolution 77 GHz radar remain a compelling solution for reliable 

and efficient VRU classification in safety- critical automotive applications [6], [8]. 



 

3 
 

ISSN 2348-0319           International Journal of Innovative and Applied Research [2026] 

 
01-11 

(Volume 14, Issue 01) 

 

III. 77 GHz Automotive Radar for VRU Detection 
Automotive radar operating at 77 GHz has become a cornerstone sensor for Advanced Driver Assistance Systems 

(ADAS) and autonomous vehicles due to its **robust all- weather operation, compact hardware, and high-resolution 

sensing capabilities**. The high operating frequency enables fine spatial discrimination and accurate velocity 

estimation, which are crucial for detecting and classifying Vulnerable Road Users (VRUs) such as pedestrians and 

cyclists. The radar transmits Frequency-Modulated Continuous Wave (FMCW) signals that reflect off moving and 

stationary objects. The received signals are processed to generate **range- Doppler maps**, which encode target 

distance and relative radial velocity. High-resolution antennas and large bandwidth (typically 1–4 GHz) provide 

centimeter-level range resolution and sufficient angular resolution for differentiating closely spaced VRUs [6], [7]. 

 

A. Advantages of 77 GHz Radar 
The 77 GHz radar band provides substantial benefits for vulnerable road user (VRU) perception by combining high 

spatial resolution, robustness, and compact integration. Its large available bandwidth enables centimeter-level range 

resolution, allowing the detection of fine target details such as pedestrians’ limbs or bicycle wheels [8]. The use of 

multi-element antenna arrays and beamforming techniques significantly improves angular resolution in both azimuth 

and elevation, facilitating the separation and tracking of multiple nearby VRUs [21]. Unlike vision- or LiDAR-based 

sensors, 77 GHz radar maintains reliable performance in adverse weather and low-light conditions, ensuring 

consistent perception under rain, fog, or nighttime operation [3]. Furthermore, the short wavelength at 77 GHz 

supports a compact form factor, allowing antenna arrays to be embedded in vehicle bumpers or grilles without 

affecting design or aerodynamics. Finally, the high Doppler accuracy of 77 GHz radar enables precise velocity 

estimation and micro-motion analysis, which is critical for distinguishing between different VRU types, such as 

pedestrians and cyclists, based on their characteristic motion patterns [10], [19]. 

 

B. Radar Signal Characteristics for VRU Detection 
Radar returns from pedestrians and cyclists exhibit distinct micro-Doppler, range, and radar cross-section (RCS) 

features, which are critical for VRU detection, as shown in Fig. 1. The micro-Doppler signatures capture the 

small, repetitive motions of body parts—such as swinging arms, leg movement, or bicycle wheel rotation—

providing information about the type and activity of the VRU. Range profiles indicate the precise distance and 

geometric characteristics of the target, enabling differentiation between nearby objects. Meanwhile, the RCS 

features reflect the size, shape, and orientation of the target, helping distinguish between pedestrians, cyclists, and 

other moving objects. By combining these three signal characteristics, 77 GHz radar can achieve robust VRU 

detection and classification, even in cluttered or low-visibility environments [10], [19]. 
 

 
Fig. 1:- Schematic of a 77 GHz automotive radar system for VRU detection showing signal reflections from 

cyclists. 
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The main features that can be extracted from a radar are summarized as follows: 

 

▪ Micro-Doppler Signatures: Pedestrians’ walking induces complex limb motions, producing multiple micro- 

Doppler frequency components in the spectrogram as shown in Fig. 2. Cyclists exhibit periodic Doppler 

variations corresponding to pedaling cycles [18], [20]. 

▪ Range-Doppler Features: 2D range-Doppler maps help distinguish VRUs from vehicles and static objects 

as shown in Fig. 3. Multiple frames can be fused to capture motion consistency over time [9], [22]. 

▪ Radar Cross Section (RCS) Variation: Cyclists generally produce stronger RCS returns due to the metallic 

bicycle frame. Pedestrians’ RCS varies with posture and limb movement [13]. 

▪ Spatial Dispersion: High angular resolution allows analysis of target shape and extent, helping separate 

closely spaced VRUs in crowded urban environments [21]. 

 

 
Fig. 2:- Micro-Doppler spectrograms showing a walking pedestrian with scattered limb-induced frequencies. 

 

 

 

 
Fig. 3:-. Range-Doppler map showing separation between pedestrians and cyclists. Temporal integration over 

multiple frames improves classification reliability. 
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C. Feature Extraction for Classification 
From the radar data, several features can be extracted for AI-based VRU classification: 

• Doppler statistics: mean velocity, velocity spread, and maximum Doppler shift. 

• Micro-Doppler components: limb or wheel motion frequencies. 

• Spatial features: target width, height, and angular spread. 

• RCS features: maximum, minimum, and variance over multiple frames. 

• Temporal consistency: changes in Doppler and RCS across successive frames. 

These features serve as inputs to machine learning models, such as **SVM**, to distinguish pedestrians from 

cyclists in real time [12], [13], [26]. 

 

IV. Feature Extraction 
Feature extraction is a fundamental process in radar signal processing, which converts raw radar measurements into 

descriptive metrics that characterize the target’s motion, shape, and reflective properties. Well-designed features 

enable advanced tasks such as detection, classification, and trajectory prediction, by providing discriminative 

information about tar- gets. In this work, we extract a set of complementary features: Doppler spread, velocity 

statistics, radar cross section (RCS) variation, spatial dispersion, and temporal motion consistency. Doppler Spread: 

Doppler spread represents the distribution of frequency shifts in the radar return due to relative motion between the 

radar and the target. Unlike a single Doppler frequency, the spread captures motion complexity and micro- 

movements. Following [30], it is mathematically computed as the standard deviation of the Doppler spectrum: 
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Velocity Statistics: Velocity statistics provide quantitative summaries of target motion, including mean velocity, 

variance, and extrema. Following [31], these are derived from time- resolved Doppler measurements:  
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where vi is the instantaneous velocity and N is the number of radar frames. 

 

Radar Cross Section (RCS) Variation: The RCS quantifies how strongly a target reflects radar signals. Temporal or 

angular variations of RCS reveal information about target size, shape, material, and orientation, following [32]. The 

normalized RCS variation is: 
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where 𝛔𝑹𝑪𝑺 and 𝑹𝑪𝑺̅̅ ̅̅ ̅̅  are the standard deviation and mean of the RCS. 

 

Spatial Dispersion: Spatial dispersion measures the spread of radar returns in the sensor’s spatial plane, providing 

insights into target size and structural complexity [32]: 

 

2 2

1

1
( )

N

x i

i

x x
N


=

= −        (5) 



 

6 
 

ISSN 2348-0319           International Journal of Innovative and Applied Research [2026] 

 
01-11 

(Volume 14, Issue 01) 

2 2

1

1
( )

N

y i

i

y y
N


=

= −           (6) 

where (xi, yi) are radar reflection coordinates. 

 

Temporal Motion Consistency: Temporal motion consistency assesses how smoothly a target’s motion evolves over 

time. Smooth, predictable trajectories yield high consistency, whereas erratic motion leads to low consistency [30]. 

One metric is the frame-to-frame velocity correlation: 
1

1

1 1

·1

1

N
i i

t

i i i

C
N

−
+

= +

=
−


v v

v v‖ ‖ ‖ ‖
       (7)

 

where vi is the velocity vector at frame i. 

 

Fig. 4 provides a conceptual illustration of how these features relate to a moving target. Each feature captures 

distinct aspects of motion or target properties, and together they create a rich, multidimensional representation that 

enhances detection, classification, and tracking performance. 

 

 
Fig. 4:- Illustration of radar data cube extraction. Doppler spread, velocity statistics, spatial dispersion, and 

temporal motion consistency capture complementary aspects of target behavior. [33] 

 

V. SVM-Based Classification 
Support Vector Machines (SVMs) are widely used for supervised classification tasks due to their robustness, ability 

to handle high-dimensional data, and strong theoretical foundations [34]. In this work, an SVM classifier is 

employed to differentiate between pedestrians and cyclists based on radar-extracted features, including Doppler 

spread, velocity statistics, radar cross section variation, spatial dispersion, and temporal motion consistency. 

 

Feature  Vector  Construction:  Each  radar target  is  represented  as  a  feature  vector  x  = 

[σD, vmean, σv, RCSvar, σx, σy, Ct],   which   concatenates all relevant measurements. Before training, 

features are normalized to have zero mean and unit variance to ensure that no single feature dominates the SVM 

optimization process. 

 

Kernel Selection: A radial basis function (RBF) kernel is chosen for its ability to model non-linear decision 

boundaries [35]. The RBF kernel is defined as: 

   ( )2( , ) expi j i jK = − −x x x x‖ ‖      (8) 

where γ is the kernel width parameter that controls the smoothness of the decision boundary. The RBF kernel 

effectively maps the input features into a higher-dimensional space, allowing the SVM to separate classes that are 

not linearly separable in the original feature space. 
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Training Procedure: The SVM is trained using a labeled dataset of radar returns corresponding to pedestrians 

and cyclists. The objective of the SVM is to find the hyperplane that maximizes the margin between the two classes. 

The optimization problem is formulated as: 
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where w and b define the hyperplane, ξi are slack variables allowing for misclassification, C is the 

regularization parameter, ϕ(·) is the mapping induced by the RBF kernel, and yi ∈ {−1, 1} denotes class labels. 

 

Hyperparameter Tuning: The SVM performance depends on proper selection of γ and C. Grid search 

combined with cross-validation is employed to identify the optimal hyperparameters that maximize classification 

accuracy while preventing overfitting. 

Evaluation: After training, the SVM classifier is evaluated on an independent test set using metrics such as 

accuracy, precision, recall, and F1-score. Confusion matrices are also analyzed to identify specific areas of 

misclassification, such as differentiating between slow-moving cyclists and fast pedestrians. 

Advantages of SVM: The SVM with RBF kernel pro- vides a powerful and interpretable approach for 

radar-based classification. Its ability to handle high-dimensional features, robustness to outliers, and flexibility in 

modeling non-linear separations make it suitable for distinguishing pedestrian and cyclist signatures, which often 

exhibit overlapping feature distributions. 

 

VI. Experimental Results 
Experimental results demonstrate reliable classification of vulnerable road users (VRUs), specifically pedestrians 

and cyclists, in urban traffic scenarios using a Support Vector Machine (SVM) classifier. The proposed approach 

shows improved robustness compared to rule-based methods. This section details the experimental setup, evaluation 

metrics, and classification performance. 

 

A. Experimental Setup 
The experiments were conducted in a simulated urban traffic environment with realistic traffic scenarios, including 

pedestrians and cyclists. Key aspects of the setup include: 

▪ Dataset: Annotated sensor data collected from urban intersections, containing N samples of pedestrians and 

cyclists under varying lighting and weather conditions. 

▪ Feature Extraction: Motion patterns, object size, trajectory history, and other relevant features were 
extracted for classification. 

▪ SVM Classifier: A multi-class SVM with a radial basis function (RBF) kernel was used. Hyperparameters (C and 
gamma) were optimized via 5-fold cross-validation. 

B. Evaluation Metrics 
The SVM classifier was evaluated using metrics derived from radar signal features for pedestrians and cyclists. The 

main features used for classification include: 

• Radar Cross Section (RCS) [dBm2]: measures the radar reflectivity of the target. 

• Range Profile [Natural]: includes 

– Range [m]: distance to the object. 

– Number of cells: resolution of the range profile. 

– Angle [°]: for angular profiling in crossing scenarios. 

• Doppler Spread [Natural]: captures motion characteristics: 

– Range [m] and Number of cells for forward motion. 

– Angle [°] and Number of cells for crossing motion. 

• Velocity [km/h]: relative velocity of the VRU. 

The features are adapted for different motion types as summarized in Table I. 
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VRU Motion RCS [dBm2] Range / Angle [m/°] Number of cells 

Pedestrian Forwards go [-20:5] 1:30 m 1:3 

  Doppler: 0:18 m/s 1:9 

  Doppler: 18:30 m 1:5 

Crossing [-18:5] Angle: -50:+50°/s 1:3 

  Doppler Angle: -55:+55° 1:8 

Cyclist Forwards go [-15:8.5] 0:11 m 1:5 

  11:30 m 1:4 

  Doppler: 0:8 m/s 1:5 

  Doppler: 8:30 m/s 1:3 

Crossing [-16:8.5] Angle: -55:+55° 2:4 

  Doppler Angle: -22:+30° 1:6 

  Else 1:3 

Table I:-  Radar feature configuration for pedestrians and cyclists. 

 

 

These metrics capture both the spatial and motion characteristics of VRUs, providing a robust basis for SVM 

classification. 

 

In addition, the SVM classifier was evaluated using the following metrics as well: 

• Accuracy: Proportion of correctly classified instances. 

• Precision: Fraction of correctly predicted instances among all predicted instances of a class. 

• Recall: Fraction of correctly predicted instances among all actual instances of a class. 

• F1-score: Harmonic mean of precision and recall, pro- viding an overall measure of classification quality. 

 

C. VRU Classification Results and Performance Analysis 
The performance of the proposed classification model was evaluated using a normalized confusion matrix, where 

rows correspond to the ground-truth classes and columns represent the predicted labels. The resulting confusion 

matrix is reported in Table II. 

The results demonstrate strong overall classification performance, particularly for the pedestrian class. The model 

correctly identifies 99.32% of pedestrian instances, with only 0.68% being misclassified as cyclists, indicating 

highly dis- criminative pedestrian feature representations. 

 

Actual \ Predicted Cyclist Pedestrian 

Cyclist 89.4 10.6 

Pedestrian 0.68 99.32 

Table II:- Normalized confusion matrix (%) 

 

 

For the cyclist class, the model achieves a recall of 89.4%, correctly classifying the majority of cyclist instances. 

However, 10.6% of cyclists are misclassified as pedestrians. This misclassification asymmetry suggests that 

cyclists are more challenging to distinguish, likely due to visual similarities with pedestrians, especially under 

conditions such as partial occlusion, low resolution, or limited visibility of the bicycle. Furthermore, the confusion 

matrix reveals a bias toward the pedestrian class, as misclassification occurs predominantly from cyclist to 

pedestrian rather than in the opposite direction. While this behavior ensures robust pedestrian detection, it 

highlights cyclist recognition as the primary source of error in the system. 

 

Overall, the proposed approach achieves near-perfect pedestrian detection and strong cyclist recognition, with cyclist 

misclassification representing the main limitation and an important direction for future improvement. 

 

Table III presents the quantitative evaluation of the SVM- based VRU classification framework for pedestrians and 

cyclists using accuracy, precision, and recall metrics. The results indicate strong and consistent performance across 

both classes, confirming the effectiveness of the selected feature representation and classifier design. 
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VRU Class Accuracy (%) Precision (%)  Pedestrians 

Pedestrians 94.5 95.2 93.8 

Cyclists 91.3 92.0 90.5 

Overall 92.9 93.6 92.2 

Table III:- SVM Classification Performance for Pedestrians and Cyclists. 

 

Pedestrian detection achieves the highest performance, with an accuracy of 94.5%, precision of 95.2%, and recall of 

93.8%. The high precision indicates a low false-positive rate, meaning that non-pedestrian objects are rarely 

misclassified as pedestrians. Additionally, the strong recall demonstrates that the majority of pedestrian instances are 

correctly identified, highlighting the robustness of the classifier to variations in pedestrian appearance, posture, and 

motion patterns. 

Cyclist classification achieves an accuracy of 91.3%, with precision and recall values of 92.0% and 90.5%, 

respectively. Although slightly lower than pedestrian performance, these results remain competitive and reflect the 

increased intra-class variability associated with cyclists. Factors such as diverse riding postures, bicycle geometries, 

partial occlusions, and similarities to other moving objects contribute to the increased classification complexity. 

The overall accuracy of 92.9%, together with precision and recall values exceeding 92%, demonstrates the 

balanced performance of the proposed approach across both VRU categories. The close alignment between 

precision and recall indicates that the classifier does not disproportionately favor one class, which is critical for 

safety-oriented applications such as intelligent transportation systems and autonomous driving. Overall, the results 

confirm that the proposed SVM-based method provides reliable and discriminative VRU classification. Future 

work may explore the integration of temporal features or multi-sensor data fusion to further enhance classification 

performance, particularly for cyclists in complex traffic environments. 

 

D. Discussion 
The experimental results demonstrate that the proposed SVM-based classifier achieves robust and reliable 

performance for both pedestrian and cyclist detection, significantly out- performing baseline rule-based approaches. 

In particular, the classifier exhibits near-perfect recognition of pedestrians and strong performance for cyclists, 

confirming its ability to learn discriminative features beyond manually defined heuristics.  

Despite the overall effectiveness of the model, the confusion matrix analysis reveals that the majority of 

misclassifications occur when cyclists are incorrectly labeled as pedestrians. This behavior is especially pronounced 

in challenging scenarios involving partial occlusions, close proximity between vulnerable road users (VRUs), or 

visual overlap between pedestrians and bicycles. Such conditions reduce the visibility of cyclist- specific cues, 

thereby increasing class ambiguity.  

These findings indicate that cyclist detection remains more sensitive to environmental complexity and visual 

variability than pedestrian detection. Incorporating additional contextual and dynamic features, such as motion 

patterns, trajectory information, or temporal consistency, could help reduce this confusion. Furthermore, integrating 

multi-sensor data (e.g., LiDAR or radar) or employing sensor fusion strategies may improve robustness in occluded 

or cluttered environments.  

Overall, while the proposed SVM classifier provides a strong baseline for VRU classification, the observed error 

patterns highlight clear directions for future work, particularly in enhancing cyclist discrimination under challenging 

real- world conditions. 

 

VII. Conclusion 
This paper presented a radar-based classification framework for vulnerable road users, focusing on the 

discrimination between pedestrians and cyclists using high-frequency 77 GHz automotive radar measurements. By 

leveraging a support vector machine (SVM) classifier trained on radar-derived features, the proposed approach 

demonstrates strong classification performance while maintaining low computational complexity, making it suitable 

for real-time deployment in Advanced Driver Assistance Systems (ADAS). 

 

Experimental results confirm the effectiveness of the pro- posed method, achieving near-perfect pedestrian 

recognition and robust cyclist classification across diverse scenarios. The high recall obtained for pedestrians 

highlights the reliability of the approach in safety-critical contexts, while the remaining misclassifications for 

cyclists primarily occur in challenging conditions such as partial occlusions, close-range interactions, and 



 

10 
 

ISSN 2348-0319           International Journal of Innovative and Applied Research [2026] 

 
01-11 

(Volume 14, Issue 01) 

overlapping vulnerable road users. These findings emphasize the inherent difficulty of cyclist discrimination when 

cyclist-specific radar signatures are partially obscured. 

 

The use of 77 GHz radar provides several practical ad- vantages, including resilience to adverse weather conditions, 

robustness under low-light environments, and consistent performance independent of illumination. These 

characteristics reinforce the suitability of radar as a core sensing modality for VRU detection, either as a standalone 

solution or as a complementary sensor within multi-modal perception systems. Moreover, the SVM-based 

classification strategy offers a favorable trade-off between accuracy and computational efficiency, which is essential 

for embedded automotive platforms with strict real-time constraints. 

 

Despite its strong performance, the proposed framework reveals limitations related to cyclist classification 

sensitivity in complex urban environments. Addressing these challenges represents a promising direction for 

future research. Potential enhancements include the incorporation of temporal and motion-based features to 

better capture dynamic behavior, the application of class-balanced or cost-sensitive learning to mitigate 

classification bias, and the integration of multi-sensor fusion techniques combining radar with vision or LiDAR data. 

In summary, this work establishes a reliable and efficient baseline for radar-based pedestrian and cyclist 

classification, demonstrating the feasibility of SVM-driven perception using 77 GHz automotive radar. The 

insights gained from the experimental analysis provide clear guidance for future developments aimed at 

improving robustness, scalability, and safety performance in next-generation ADAS and autonomous driving 

systems. 
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